Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
APP2(i, app2(app2(., x), y)) -> APP2(i, y)
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., x), app2(app2(., y), z))
APP2(i, app2(app2(., x), y)) -> APP2(i, x)
APP2(i, app2(app2(., x), y)) -> APP2(., app2(i, y))
APP2(i, app2(app2(., x), y)) -> APP2(app2(., app2(i, y)), app2(i, x))
APP2(app2(., app2(app2(., x), y)), z) -> APP2(., y)
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., y), z)
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(i, app2(app2(., x), y)) -> APP2(i, y)
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., x), app2(app2(., y), z))
APP2(i, app2(app2(., x), y)) -> APP2(i, x)
APP2(i, app2(app2(., x), y)) -> APP2(., app2(i, y))
APP2(i, app2(app2(., x), y)) -> APP2(app2(., app2(i, y)), app2(i, x))
APP2(app2(., app2(app2(., x), y)), z) -> APP2(., y)
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., y), z)
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., x), app2(app2(., y), z))
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., y), z)
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., x), app2(app2(., y), z))
APP2(app2(., app2(app2(., x), y)), z) -> APP2(app2(., y), z)
Used argument filtering: APP2(x1, x2) = x1
app2(x1, x2) = app2(x1, x2)
. = .
1 = 1
i = i
Used ordering: Quasi Precedence:
app_2 > 1
. > 1
i > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
APP2(i, app2(app2(., x), y)) -> APP2(i, y)
APP2(i, app2(app2(., x), y)) -> APP2(i, x)
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(i, app2(app2(., x), y)) -> APP2(i, y)
APP2(i, app2(app2(., x), y)) -> APP2(i, x)
Used argument filtering: APP2(x1, x2) = x2
app2(x1, x2) = app2(x1, x2)
. = .
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(., 1), x) -> x
app2(app2(., x), 1) -> x
app2(app2(., app2(i, x)), x) -> 1
app2(app2(., x), app2(i, x)) -> 1
app2(app2(., app2(i, y)), app2(app2(., y), z)) -> z
app2(app2(., y), app2(app2(., app2(i, y)), z)) -> z
app2(app2(., app2(app2(., x), y)), z) -> app2(app2(., x), app2(app2(., y), z))
app2(i, 1) -> 1
app2(i, app2(i, x)) -> x
app2(i, app2(app2(., x), y)) -> app2(app2(., app2(i, y)), app2(i, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.